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Group analysis of the equations of motion of ionized gas heated by external 
radiation is performed. The problem of self-similar flow of completely ionized 
gas is solved numerically. 

In considering various problems of the motion of two-phase media and plasma theory, 
there arises the need to investigate the properties of partial differential equations de- 
scribing the dynamics of a two-component gas. In the present work, some particular solu- 
tions of the equations of motion of ionized gas are found and investigated. To obtain the 
solutions, the group-theory methods developed in [i] are used. The solutions obtained be- 
long to the class of invariant solutions. 

I. The equations of motion of nonviscous and non-heat-conducting ionized gas are 
written in the form 

Op Op Ou = O, 
F, = - ~  .+- U ~ x  -f- 9 O x 

Ou au ap __ o, 
F~ -- O T + O~ O f  + ax 

Oe O~ Ou 
F3 = 9 -~ - - f f  9U-~x + p--~x - -Q  = O, 

Oel ~ au 
F~ = p - 7 - f f  9 u . @ Pi ~x q- Q~i = O' 

P4, = (2 -- 1) 9s~,~, ei,~ = ci,~Ti,~, p = p~ .+- Pc. 

The following relations are specified for Q 

X 

( i )  

(2) 

The exchange energy Qei may be written in the form [2] 

G~ = G ~ ( ~ - -  A~), A = cjc~. (3) 

Suppose that the coefficients Q~~ i and R may be written in power-law form 

G ~ = QoO = e~' ,  • = • ~ O ~ ' ,  Qo = const,  Xo = const.  ( 4 )  

Group analysis of the system in Eqs. (1)-(4) is performed, and invariant solutions of 
this system are found. The basic group is found by the standard means [i], considering an 
infinitesimal operator of the space E6 of variables (~, ~) = {x, t, p, u, r ee}: 

. - *  ~ 0 ~{  ~ -~ 0 
x =  ~' (x, v) ~ + (x, v) Ov~ " ( 5 )  

The c o n t i n u a t i o n  o f  X i n  t h e  f i r s t  d e r i v a t i v e s  p~ = @vJ/@x k t a k e s  t h e  f o r m  [1]  

R =  x + G  o 
Op~ ' (6) 

where 
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~i = D ~ I  i -  p~ Dr D~ -- OX ~ + p~ Ov i 

The system in Eq. (i) admits the operator in Eq. (5) if finite transformations of the 
single-parameter group produced by this operator transform each solution of Eq. (i) back 

% 

into the solution of this system. In terms of the continuation X of the operator in Eq. (6), 
this is the condition of invariance of Eq. (i) as a manifold in the space (~, ~) and of the 

derivatives of p with respect to X, i.e., it must be the case that XF i = 0 on the manifolds 
F i = 0 (i = i, 2, 3, 4). The latter leads to the existence of the following basis operator 
groups 

0 0 a 
X~ - , X ~ - - t  + - - ,  (7) 

Ox " Ox Ou 

X3 = a~t - - d  + ~ - -  x - -  - -  ~ i  , 

ox 2 o. 2 p T 

where s = 211 -- ~a + (n + i)aI]/(~3 -- i); s(a -- i) = 0. 

By the methods of [i], it may be shown that the optimal system of operators (subalgebra) 
takes the form Xz, Xa, X3, XI + X=,Xa + X3, XI + X3. The corresponding invariant solutions 
are 

u = u (0 ,  ~ = R (t), p = ~ (0; u - x / t  + u (t), ~ = t? (t), p = ~ (0; 

•  u = v = 

t 

~----- x / t  ~, 6 = (2a l  - -  1) /2a , ;  

u =  x/(1 + t ) + U ( t ) ,  p R ( t ) ,  p = y ' ( t ) ;  

u = 2 + U (k)lt ' / ~ ' ,  p = R (~,)lt ~/2~, 

p = ~ ( ~ ) / t  26r , )b = X -@ ~(,1 ( 6  - 1) /r u =: U(~ ) / I  ' / 2 ~ ,  

s + 2  

p - R (x)/t ~/2~', p = ~ (~,)/t .2~,, ;~ = (x + t/czx@?. 

There are no other invariant solutions in nonsimilar subgroups. 

Consider the invariant solution corresponding to the operator group G<X3> Since this 
group is an extension group, the given solution will be self-similar [i]. In [3], it was 
shown that algebraic integrals may be obtained for self-similar motions. 

When a =~ i, the self-similar ~olutions existing in the extension group G <  )<3 > will 
hold when s = O, while ~a = 1 + (n + l)al -- a and a3 are arbitrary. For a completely ionized 
plasma [2], al -- --3/2, ~2 = --2, ~ = ~3 = 2, which is obtained with linear energy supply 

n= i. 

2. The self-similar class of flows will now be examined in more detail; consider the 
following problem. Suppose that, in the cross section x = 0, at time t = O, the supply of 
completely ionized gas is switched on; the gas is modeled by surface mass sources m = mot l 
and energy sources w = wotk. It is clear that, if the problem is self-similar (under the 
assumption of strong perturbations), it is necessary to choose I = 1/3, k = I, n = 1 [4]. 
Investigation of the structure of the nonsteady motion arising demonstrates (when t > O, 
mo, wo # O) that, a shock wave will propagate along the surrounding gas; behind the shock 
wave, right up to the contact discontinuity Xp, there is a region of transparent and equi- 
librium compressed gas (here x0-- Q0=0, the flow in this region is described by the corre- 
sponding problem of a piston [4]). From the contact surface Xp to the cross section x = 0, 
there exists a continuous solution described by Eq. (i). Self-similar variables are intro- 

duced as follows 

(8) 
f (~) = u/u2, g ()0 = P/92, h ()~) = PIP2, 

0 (~,) = e/e~, ~, = x/x~, x~ = Q~/3 t ~, 6 = 4/3,  
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Fig. i. Dependence of the 

temperature ratio Te/T i for 
different cases: i) B < 
0.i; 2) B > 0.i. 
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F i g .  2.  T y p i c a l  p r o f i l e s  
when B < 0 . 1 .  

where all the functions are referred to their values behind the shock wave. Substituting 
the variables in Eq. (8) into Eq. (i), a system of differential (ordinary) equations is 

obtained and must be integrated in the interval 04 % ~ i. The mass and energy balance 
of the gas is written in the form [4] 

~p 

! 6(v+1 gd  m0 i (9) 
y 1 P oQ~/3 o -- ~ 2-I PoQo 

For  a s o u r c e  a t  t h e  s u r f a c e  x = 0,  i t  may be  f o u n d ,  u s i n g  Eq. ( 2 ) ,  t h a t  

~p 
~0 ~ ~ (v § 1) 6 

- % exp ( - -B [ e2/0: dZ) B = 
o ' Oo 4 ( y - - 1 ) z 6  ~ " 

The boundary conditions at'X = 0 take the form 

g ( 0 ) / ( 0 )  = t o o ( y - -  l) fz (V-~ 1) z Wo 
o 26poQ~/~ , vo  (o)  + (o) = 

262 moQ~/~ ' 

and f = g = h = 8 = i at ~ = i. The mass of gas covered by the shock wave lies between the 
I 

contact surface and the shock wave; therefore, the relation ~gd%=(y--l)/(yq- i) is added to 
~p 

the integral in Eq. (9) and must be used to monitor the calculation. 

The results of certain calculations are shown in Figs. i and 2. It is evident that the 
solution depends strongly on B. When B < 0.i, ionized gas absorbs the external radiation 
through its volume, and is heated, when the separation between the electron and ion tempera- 
ture may reach Te/T i = 1.5-2. When B > 0.i, the main part of the incoming energy is ab- 
sorbed by the contact surface, where nonequilibrium effects lead to the appearance of a 
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"heating tongue"; the main mass of gas, however, has an equalized temperature. The other 
dimensionless parameters appearing in the problem have little influence on the qualitative 
picture of the flow. Taking account of particular physical processes in the general case 
leads to loss of self-similarity. The solutions obtained may serve as accurate data for the 
calculation of non-self-similar problems by finite-difference methods. 

Note, in conclusion, that self-similar solutions also exist when the viscosity and heat 
conduction are taken into account [3-5], and also when Po = P=x -m (m < i, Po = uo = 0). In 
this case, assuming power-law dependences of the form ~.= ~opBe~ I, k = kopB=c~ 3, ~o, ko = 

const for the viscosity ~ and thermal conductivity k, the following self-similarity condi- 
tions are obtained 

~i = 3+ 2n--~[n+ 2--~(n+3)'] 
2 (n + ~) 

~ 3 =  3 + 2 n - - ~ [ n - + - 2 - - ~ 2 ( n + 3 ) ]  , 

2 (n + ~) 

- -  3 (n + 3)(~3~ - -  1) 

2 (n + ~) 2 (n + ~) 

NOTATION 

p, pressure; T, temperature; e, internal energy; p, density, u, velocity; y, adiabatic 
index; x, t, spatial and time coordinates; Q, influx of energy from the external radiation 
to the gas particles; c i, T i, specific heat and temperature of ionic gas; Ce, Te, specific 
heat and temperature of electron gas; Pi, Pe, partial pressures of ionic gas and electron 
gas; Qei, energy transfer between the electron and ion gases; ~, coefficient of absorption of 

external radiation; q, intensity of external radiation; X, X, operators; %, dimensionless 
coordinate; f, h, g, dimensionless functions; • q0, Q0 , constants. 
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